If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+3x^2)=(15+x)
We move all terms to the left:
(x+3x^2)-((15+x))=0
We add all the numbers together, and all the variables
(x+3x^2)-((x+15))=0
We get rid of parentheses
3x^2+x-((x+15))=0
We calculate terms in parentheses: -((x+15)), so:We get rid of parentheses
(x+15)
We get rid of parentheses
x+15
Back to the equation:
-(x+15)
3x^2+x-x-15=0
We add all the numbers together, and all the variables
3x^2-15=0
a = 3; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·3·(-15)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*3}=\frac{0-6\sqrt{5}}{6} =-\frac{6\sqrt{5}}{6} =-\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*3}=\frac{0+6\sqrt{5}}{6} =\frac{6\sqrt{5}}{6} =\sqrt{5} $
| (1/4)(r-16)=7 | | 12t=4t-120 | | 10(6x+12)-10(10+2x)=60 | | 130=7x+x | | 4x6=-18 | | 3x3=60 | | -3(d+6)=-10 | | F(x)=4x^2+5x-1 | | 11(7-x)-14(3x+2)=49 | | 2(x+8)=-÷(x+3) | | (6-2x)=(x+9) | | 12.73+0.06w=13.48-0.14 | | -10x^2-100x+160=0 | | 57+7x=9x+7x9 | | -14(1+3x)+7(2x+7)=91 | | 2^n=50 | | 12r+12r+8=56 | | 9x=(x+2) | | -14(1+2x)-(5-5x)=27 | | 9x=(x+2 | | 47+18.25x=22+24.5x | | 64=9v-9 | | 56= 32+8y | | 56=56=56= 32+8y | | 10x^2-100x+160=Y | | -x=7x | | 4x-12+3x+6=6 | | c/8=13/20 | | u/2-7=-5 | | 2(2×+6y)=11 | | 46+23=46x+23 | | 9.05r=27.25 |